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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Extension of Wheeler-Feynman quantum theory to the 
relativistic domain I. Scattering processes 

P. C .  W. DAVIES 
Institute of Theoretical Astronomy, University of Cambridge, Cambridge, UK 
MS. receiued 28th August 1970, inJinal revised form 1st July 1971 

Abstract. The quantization of Wheeler-Feynman direct interparticle action 
electrodynamics is refined and extended to the relativistic domain, using the 
S matrix technique developed previously. The analysis is effected on the 
exact expression for S, rather than the perturbation expansion. Source particles 
are treated as indistinguishable fermions with antiparticles. The response of 
the universe is incorporated in a general way, without allusion to specific 
absorber mechanisms. All the results of conventional QED emerge, provided 
one makes certain cosmological assumptions. 

Introduction 
Recently, quantum mechanical descriptions of the direct interparticle action 

electrodynamics of Wheeler and Feynman (1945, 1949) have been given (Hoyle and 
Narlikar 1969, 1971, Davies 1970, to be referred to as A). Although fundamentally 
symmetric in the presence of both advanced and retarded electromagnetic fields, which 
are here devoid of independent mechanical status, these analyses have succeeded 
in demonstrating that all the results of conventional QED emerge also from the 
Wheeler-Feynman theory, provided certain cosmological 

The classical Wheeler-Feynman theory derives from 
conditions-are realized. 
the Fokker action 

Equation (1) is the total action for an assembly of electromagnetically interacting 
particles of charge and mass e and m, respectively. x labels the world Iines and the h 
are monotonically increasing parameters along the respective x. The metric tensor 
is g,, and the U are space-like surfaces outside of which SS vanishes. The  first term 
is just the total free particle action and the second represents all two particle inter- 
actions counted just once for each pair of particles. There is no term in the action 
for the free electromagnetic field as it is riwc a separate mechanical system in this 
theory. We distinguish an interaction Lagrangian for the particle i 

and a direct particle four potential due to the source j 

dzy 
dh 

g,,D(x-xj)-dhj. (3) 

836 
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Canonical quantization techniques cannot be applied to a theory derived from a 
Lagrangian such as (2), which is nonlocal in time, and the procedure adopted in A 
was to deal directly with the S matrix perturbation expansiont 

S = 2 k.-? I . . . I P[Y(x,) .  . . 9 ( x n ) ]  d4x,. . .d4x, , n! (4) 

where P is the time ordering operator. 
The  S matrix is the usual starting point in conventional quantum electrodynamics 

where the electromagnetic field is also a quantized mechanical system. In  this case 
one chooses 

S ( x )  = jU(x)A,(x) (5) 
where j. is an appropriate current four vector and A, is the four potential operator 
of the quantized electromagnetic field. The  right hand side of ( 5 )  then describes the 
basic particle-field interaction which is the starting point of conventional QED. 

Each scattering amplitude taken between an initial and final state may be associated 
with Feynman type graphs which correspond to different electrodynamic processes. 
These graphs contain internal and external photon lines which represent virtual and 
real photons respectively. The  presence of such a line is associated with a certain 
factor in the S matrix, which in the conventional theory may be determined by 
applying the usual quantum rules to the field A,. In  particular we need the following 
results 

<O[A,(x)A,(x’)/O ) = -iD+(x-x’)g,, (6)  
<o IP[A,(~)Av(x’>l1O ) = - - xf)g,v. (7) 

However, if we wish to use the Wheeler-Feynman theory, A, is not quantized, and 
one must recover the above mentioned factors from the response of the universe. 

I n  A it was shown how we could use 

9 ( x )  = j ( a ) , (x )L5 (x -x ’ ) j (b ,p (x f )  d4x d4xf (8) 

as our basicfirst order interaction, in place of (S), in analogy to the classical interaction 
Lagrangian (2), which has the form of a current-current interaction. - 

Having thus reconstructed the S matrix expansion, it was shown how the response 
of the universe enabled us to recover the basic results (6) and ( 7 ) ,  for the transverse 
polarization directions. This implies that, with care over definitions, the Wheeler- 
Feynman theory successfully accounts for radiative transition probabilities, level 
shifts, etc, as described by conventional QED, to all orders of the expansion. I n  order 
to  achieve these results, however, a number of simplifications were necessary. 

I n  the present paper several improvements will be made on the existing theory. 
We shall work with the exact expression for S rather than the perturbation expansion 
(2). In  A it was possible to achieve the required results without allusion to the detailed 
interactions of the ‘laboratory’ system to be described, because of a factorization into 
two classes; the ‘laboratory’ and the ‘universe’. This was only possible if the direct 
Wheeler-Feynman interaction was omitted in the laboratory system. All interaction 
in this class was due to coupling through the response of the universe. This technique 
permitted the response of the universe to be dealt with in a simple and nonrelativistic 

We work always in the interaction representation, unless stated to the contrary. 
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fashion, without restricting the laboratory system to such an unsophisticatedformalism, 
and avoided the necessity to deal with such problems as interaction between identical 
particles, and between particles and antiparticles, as an integral part of the Wheeler- 
Feynman scheme. These latter considerations could be taken over intact from the 
conventional theory, once the basic quantum behaviour of the A, field had been 
recovered. (This led to difficulty when dealing with free particle states.) However, 
the separation is clearly an idealization, as there is no criterion to determine whether 
a given particle (especially a free one) belongs to the ‘laboratory’ or the ‘universe’. 
In  this paper, then, the distinction will be removed, in the sense that the full Wheeler- 
Feynman coupling will be retained between all particles ; identical particles and anti- 
particles included. The  response of the universe is now incorporated in a fully 
relativistic and general fashion, as in derivation four of Wheeler and Feynman (1945). 
The procedure closely parallels that of Hoyle and Narlikar’s paper I1 (1971), but 
retains the S matrix formalism. The relativistic treatment will be presented in two 
parts. In  $ 1 we shall consider how scattering processes (or, in field theory language, 
processes involving virtual photons only) may be described in the Wheeler-Feynman 
theory. In  4 2 we shall consider emission processes (real photons) in which there is an 
irreversible energy loss to the universe. 

1. Elimination of the virtual photons 
The general expression for S is given by 

S = P exp( - iJ) = P exp{ - i s 9 ( x )  d4x} (9) 

where the action J is now a quantum operator. Expansion of the exponential leads 
to equation (4). We have to decide on what to adopt for J.  In  A the electromagnetic 
interaction at each point in class one was due to interparticle coupling with a dis- 
tinguishable current in class two (cf equation (5)). I n  order to discuss interactions 
between indistinguishable particles it is helpful to digress and consider an aspect of 
the conventional theory first discussed by Feynman (1948, 
tion of the virtual photons. In  the conventional theory 
becomes 

The nth order perturbation matrix element is then 

1950), that is, the eiimina- 
9 is given by (5) and S 

S ,  = mJ ... 1’ P[j,(xl) ...j,( xn)]PIAu(xl) ... A‘(x,)] d4x l . . . d 4 ~ ,  (11) n! 

where we have used the fact that the j and A commute. 
Now consider only even order elements S ,  where there are no photons initially 

and finally (virtually photons only). If we apply Wick’s theorem to the second factor 
in the integrand of (11) we only have nonzero matrix elements in the terms in which 
all photon operators are contracted over. That is 

together with all other similar terms in which the contractions are taken over all 
possible pairs of A operators. There are n!/{2n’2 x (n /2) ! )  of these terms and they all 
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give identical contributions to S,. If we write in the photon propagator explicitly, 
using ( 7 ) ,  one such term is 

(i),I2 
n! - J” * * e  J p[j,(xl>jy(x2>...jp(X,-I)ju(Xn)1 

X DF(x1 -Xa)...D,(X,_,-X,)g’”...gpu d 4 X 1  ... d4X,. (13) 

As all the terms are identical we may simply multiply by n!l(2n12 x (n/2)!), and bring 
the c number propagators inside the P operator to give 

Now suppose instead of (10) we had started with the expression 

exp (hi j jjy(x)DF(X-3/lje(Y) d4X d4Y) (15) 

where the P operator acts on all the currents derived from the exponent. Then the 
(n/2)th order matrix element of expression (15) is given by (14). The  action in the 
exponent of (15) has the form of a direct current-current coupling through the 
propagator D,. 

If the j,(x) and ?(y) were distinguishable currents, we should have to remove 
the factor fr from the exponent to obtain agreement with experiment. This is because 
we cannot permute the end points of photon lines that start and end on different 
currents in a Feynman graph. This gives rise to an overall factor of 2,i2 for n/2 
photons. This situation also arises in the Hoyle and Narlikar (1969) treatment (p. 64) 
and may be thought of physically as follows. The interaction of two distinguishable 
currents, A and B, is due to the action on A in the field of B, plus the action on B 
in the field of A. If A and B are indistinguishable, however, the two is absent owing 
to the fact that a current acts on itself only once. 

The most general action will consist of a collection of distinguishable and indis- 
tinguishable currents in mutual- and self-action. This is clearly described by the 
expression 

p exp( i 4 j Jj(i)ir(x)DF(x -Y)hYY) d4X d4Y) (16) 

where the double summation extends over all species of particle in the collection. 
The  terms i = j give the contributions such as (15), that is, self-action and interaction 
of indistinguishable currents. The  terms i # j account for interaction between 
distinguishable currents. Each such pair is counted twice in the double summation, 
and this will just cancel the 4 in the exponent of (16). 

Although from a physical point of view one would certainly expect that in the 
absence of asymptotic ( t  -+ CO) excitation of the electromagnetic field the system 
could be regarded as a collection of interacting currents, it is imporrant to remember 
that the result (16) applies to identical currents also and even self-action. 

We therefore have the following theorem : 
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Theorem 1 
For all processes in QED in which the total number of real photons is zero, the 

conventional current-field interaction used in the S matrix for a collection of species 
of particles, given by 

J i c i , U ( X ) W )  d4X (17) 

may be replaced by the direct current-current interaction given by 

c c 4 J Jj,,,,(X)D~(X-rlj,jp(Y) d4x d*y 
I 3  

without change in the results. 
This result was originally obtained by Feynman using his own quantum mech- 

anics in 1948. A less direct proof using the S matrix is given in Akhiezer and 
Beresteskii (1965, p. 302). 

2. Wheeler-Feynman theory 

charged particle i interacting with a collection of other charged particles j 
Classical Maxwell theory supplies an expression for the total field acting on a 

c AS% +wt% - A?:;) 
I P i  

excluding a term which leads to a divergent selfenergy. 
On the other hand, classical Wheeler-Feynman theory gives 

4 c (4% +A?%). 
j # t  

The basic assertion of the absorber theory is that for a system enclosed in a light 
tight box, (19) may be used in place of (18) without changing the results (provided 
the summation includes all the box particles also). The reason is easy to see. The  
difference AWR between (18) and (19) is 

AbR = 4 1 (AS,B,t,-A$j;) = 2 say. 
allf allj 

But AbR clearly vanishes outside the box. Because DAWR = 0, if it vanishes any- 
where it vanishes everywhere. So (18) and (19) are the same in this case. 

A;,, is sometimes called the response field of the universe for particlej. I t  may 
be written 

4),(4 = 4 J D(X-Y)JdY) d4Y (20) 

where J(j)b is the classical charged current of particle j .  The Green function D is 
given by 

and is a solution of the homogeneous equation OD = 0. It may be invariantly de- 
composed into positive and negative frequency parts 

D = +(D..t- Dad") (21) 

D = D + + D -  (22) 
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which have the property 
D+(x-y) = -D-(y-3). 

The classical expression (20) makes no distinction between these components. 
Returning to the quantum theory, let us now examine the integrals in the exponent 

of (16) in a little more detail. The Feynman propagator may be decomposed as 
follows 

where D = &Dret+ @Iadv. This decomposition gives two sets of terms which receive 
immediate interpretation in the Wheeler-Feynman theory. The  first set is 

D, = L)+*(D+ -D- ) (24) 

Q f. c j jj,,,,(X)rj(X-Y)iCl,”(Y) d43 d4Y* (25) 
3’ 

This will be recognized as the quantum action of the ‘elementary’ Wheeler-Feynman 
coupling between the charged currents. Comparison with the second term of 
equation (1)shows that we have merely replaced the classical currents with their corres- 
ponding operators j .  There is a further important difference however. In  the classical 
case the double summation ran over all i p j ,  but in (25) we must include a term 
i = j .  That is, in the quantum theory a current may still act on itself. Although at 
first sight this seems to be against the spirit of the Wheeler-Feynman theory, it is 
clear that some structure of this sort must appear in the quantum theory in order 
that indistinguishable particles may interact without ambiguity. Moreover, if we 
are to interpret antiparticles as particles with reversed world lines (see figure l), the 
known nonzero coupling between, for example, electrons and positrons, demands 
some sort of self-action. 

\ 
\ 

Figure 1. 

Figure 2 .  

Using the property (23), the second set of terms becomes 
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Because of the double summations both terms (26) are identical and we obtain, on 
adding 

This set of terms may be interpreted as the response of the universe. 
A simple way of seeing this is to adopt a model in which all the currents are con- 

sidered as given classical functions. Then considering the contribution of (27) to the 
action of the ith species of current, we have 

Call the function in braces APR+. Then if the currents extend over the whole absorb- 
ing system AbR+ will vanish everywhere by the same reasoning used in the classical 
theory above. In  practice, we do not want the S matrix to include explicitly all inter- 
actions in the universe, but rather a small subset of interest in the laboratory. This 
is because if we localize our experimental apparatus we may consider all currents 
outside the laboratory to be distinguished, and label them by different letters in the 
summation in (27). As i, j now only run over a small subset, the contribution (27) 
is not zero and may be thought of as due to response fields AEL for each species j ,  
in analogy to the classical fields (20). 

A more rigorous demonstration may be given considering the currents as operators. 
Suppose we consider transitions between initial states x ,  which contain no free photons 
and unexcited absorber atoms, and final states p. The matrix S is given by expression 
(16) which is in general not unitary. This is because in arriving at (16) we ignored 
all processes involving real photons. However, if we now demand that the transition 
probability to final states with real photons is zero, (16) must be unitary. We there- 
fore write the quantum absorber condition as 

c I <B’lSl.>IZ = 0 (29) 
4‘ 

where p‘ are states containing real photons. Physically, condition (29) tells us that 
we have chosen our states to correspond to a system which completely absorbs all 
photons emitted. 

Now (24) splits DF into real (D) and imaginary (D+ -D-) parts. This results in 
the decomposition of the integrand of (16) into Hermitean (25) and anti-Hermitean 
(27) parts. But if S is unitary, the integrand of (16) must be Hermitean, and so (27) 
will vanish when condition (29) is imposed on the states. 

T o  summarize, conventional QED gives expression (16) whereas Wheeler-Feynman 
theory implies expression (25). But they lead to identical results when applied to a 
system in a light tight box, because their difference, expression (27), leaves the final 
results unchanged when appropriate states are taken for the S matrix. 

Note that AbR+ is the direct analogue of the classical response field (20) (when the 
currents are replaced by operators) except that in the quantum case we have singled 
out the positive frequencies of the D function. This is readily understood in the 
Wheeler-Feynman theory as an indication that the universe acts as an absorber of 
radiation, which means that only the positive frequencies which excite upward transi- 
tions of the particles in the cosmological medium, are completely absorbed. This 
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distinction cannot be made in the classical theory. This explains why we must use 
DF in the quantum theory, but Dret in the classical theory. 

3. The Coulomb interaction 
I n  all the above analysis, as well as in A it was implicit that we were dealing with 

transverse polarization directions only. This is essentially because in an electrically 
neutral universe there is no long range contribution to the Coulomb field, so we 
cannot have a response AhR for p = 4. This need cause no difficulty though. There 
is no need to account for radiation of timelike (Coulomb) photons from a source 
system as there was in the case of the transverse polarization directions-an inevitable 
consequence of the existence of a response field. However, in a fully covariant treat- 
ment it is more elegant to treat all four polarization directions on an equal footing. 
Hence the Feynman propagator DF is usually invoked even for Coulomb contribu- 
tions, although it is known that we still obtain correct results working in the Coulomb 
gauge, with the transverse radiation field only being quantized. In  the present 
theory Coulomb effects are propagated with D, not D,. It is easy to see that in 
practical calculations this makes no difference. 

T o  see this, first note that when Coulomb forces are important we must integrate 
the particle wavefunctions over all space. In  A, when we considered the interaction 
of bound particles, we were able to perform a two-centre decomposition which res- 
tricted the major contributions of these integrals to the region of emitter and absorber. 
Coulomb forces are then negligible. Only for free particles u7ill they become impor- 
tant. 

Consider lowest order Moller scattering. It is easy to show (eg Akhiezer and 
Berestetskii 1965, p. 5 15) that the conventional matrix element for scattering contains 
the factor 

where the j are the transition currents between the free particle states A -+ B and 
C + D, while the exponential factor represents retardation over the interparticle 
distance Irl- U,]. E is the energy difference between A and B. If E > 0 then we 
may regard the retarded field of jhAB to be acting on j C D p ,  or the advanced field of 

j C D h  acting the other way. If instead of DF we had used D, we would not have arrived 
at (30)) but at 

It is straightforward to see that (30) and (31) give the same result when the inte- 
grations are carried out explicitly. T o  see this we assume the states A, B, and C, D 
are momentum eigenstates, in which case we are interested in the factors 
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where 
r12 = r l - r 2 .  

The  integration over rz gives a momentum conserving 6 function. The  angular 
integration over P,, gives a factor ~ i n ~ ~ A - p B ~ ~ ~ , / ~ P A - P B ~ ~ ~ , ,  so the factors of 
interest become 

These integrals may be evaluated using an appropriate convergence factor. If we 
use the + sign in front of \El (retarded case) we have 

1 1 
(32) _ -  1 - 

P A - P B l  f I E l  - j P A - p B [  + 

On the other hand, if we use - \El (advanced case) we have 

1 1 
(33) ---___-_ = - 1 7 ) I P A - P B j 2 -  IE/2* ~ J P A - P B I  IPA-PBI- IEl - IPA-PBI- /El 

Clearly, therefore, as regards the actual matrix elements, it is immaterial whether 

- 

we use D or D,. 

Discussion 
I n  1948 Feynman demonstrated that in his path integral quantum mechanics the 

virtual photons could be eliminated from the description of electrodynamic processes. 
This resulted in an expression for the scattering amplitude involving an ‘influence 
functional R’ which only incorporates the direct current-current coupling through 
the propagator DF. In  this paper we have repeated Feynman’s analysis using the 
interaction picture for the S matrix, which has the advantage of being a more familiar 
formalism. The  result has been the same. The  exponent of our equation (15) is the 
exact S matrix equivalent of Feynman’s R. In  a footnote following his equation (24), 
he points out that, from the classical theory ‘one might have anticipated that R would 
have been simply R” (R’ is just R with DF replaced by fi). He continues ‘for a 
system enclosed in a light tight box, however, it appears likely that both R and R’ 
lead to the same results’. In  the present treatment changing R to R’ merely corres- 
ponds to adding the quantity (27) to the exponent of (15). But in a light tight box we 
have seen that the additional terms due to D+ leave the results unchanged and Feyn- 
man’s conjecture is verified. Thus D and DF give the same results in all nonradiative 
processes, provided we live in a universe which absorbs completely all positive 
frequency disturbances on the future light cone. Many cosmological models, for 
example, the Einstein-de Sitter model, do not satisfy this requirement. 

Having established a general rule for all virtual photon processes Feynman also 
proceeded to demonstrate how real photon scattering amplitudes could be extracted 
from these formulae. This involves the question of separating out local processes 
from the rest of the universe. The  elimination of the real photons will be dealt with 
in paper 11. 
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